Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38254557

RESUMO

Marketing melons (Cucumis melo) as convenient fresh-cut products is popular nowadays. However, damage inflicted by fresh-cut processing results in fast quality degradation and food safety risks. The life of fresh-cut produce can be extended by a modified atmosphere (MA), either generated in a package by tissue respiration (a passive MA) or injected by gas flushing (an active MA). This work investigated the effect of passive and active MA formed in packages of different perforation levels on the quality of fresh-cut melons of two genetic groups: C. melo var. cantalupensis, characterized by climacteric fruit behavior, and non-climacteric C. melo inodorus. The best product preservation was achieved in passive MA packages: non-perforated for inodorus melons and micro-perforated for cantalupensis ones. The optimal packages allowed for the preservation of both genotypes for 14 days at 6-8 °C. The major factors limiting the shelf life of fresh-cut melons were microbial spoilage, translucency disorder and hypoxic fermentation associated with cantalupensis melons with enhanced ethyl acetate accumulation. Inodorus melons were found to be preferable for fresh-cut processing since they were less prone to fermented off-flavor development.

2.
ACS Nano ; 17(22): 23020-23031, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37934119

RESUMO

This work addresses the challenge of delivering bioactive molecules by designing biocompatible nanogel particles (NGPs) utilizing rationally modified nature-sourced building blocks: capryl-oligochitosan and oxidized inosine. Capryl substituents endowed the resultant NGPs with membrane-penetration capabilities, while purine-containing inosine allowed H-bond/π-π/π-cation interactions. The prepared NGPs were complexed with carboxyfluorescein-labeled single-stranded oligonucleotide (FAM-oligo) and DsRed-encoding plasmid DNA. The successful delivery of FAM-oligo to the cell cytoplasm of the Nicotiana benthamiana plant was observed. Alexa 555-labeled bovine serum albumin (Alexa 555-BSA) was also efficiently encapsulated and delivered to the plant. In addition to delivering FAM-oligo and Alexa 555-BSA separately, NGPs also successfully co-delivered both biomolecules to the plant. Finally, NGPs successfully encapsulated the drug amphotericin B and reduced its toxicity while maintaining its efficacy. The presented findings suggest that NGPs may become a promising platform for the advanced delivery of bioactive molecules in various applications.


Assuntos
Nucleosídeos , Oligossacarídeos , Nanogéis , Inosina , Soroalbumina Bovina , Sistemas de Liberação de Medicamentos
3.
Colloids Surf B Biointerfaces ; 227: 113355, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37216726

RESUMO

This study reports significant steps toward developing anti-biofilm surfaces based on superhydrophobic properties that meet the complex demands of today's food and medical regulations. It presents inverse Pickering emulsions of water in dimethyl carbonate (DMC) stabilized by hydrophobic silica (R202) as a possible food-grade coating formulation and describes its significant passive anti-biofilm properties. The final coatings are formed by applying the emulsions on the target surface, followed by evaporation to form a rough layer. Analysis shows that the final coatings exhibited a Contact Angle (CA) of up to 155° and a Roll-off Angle (RA) lower than 1° on the polypropylene (PP) surface, along with a relatively high light transition. Dissolving polycaprolactone (PCL) into the continuous phase enhanced the average CA and coating uniformity but hindered the anti-biofilm activity and light transmission. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed a uniform coating by a "Swiss-cheese" like structure with high nanoscale and microscale roughness. Biofilm experiments confirm the coating's anti-biofilm abilities that led to the reduction in survival rates of S.aureus and E.coli, by 90-95% respectively, compared to uncoated PP surfaces.


Assuntos
Biofilmes , Staphylococcus aureus , Emulsões/química , Interações Hidrofóbicas e Hidrofílicas , Água
4.
Carbohydr Polym ; 314: 120947, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173046

RESUMO

Herein, we report biocompatible hydrogel for wound healing that was prepared using nature-sourced building blocks. For the first time, OCS was employed as a building macromolecule to form bulk hydrogels along with the nature-sourced nucleoside derivative (inosine dialdehyde, IdA) as the cross-linker. A strong correlation was obtained between the mechanical properties and stability of the prepared hydrogels with a cross-linker concentration. The Cryo-SEM images of IdA/OCS hydrogels showed an interconnected spongy-like porous structure. Alexa 555 labeled bovine serum albumin was incorporated into the hydrogels matrix. The release kinetics studies under physiological conditions indicated that cross-linker concentration could also control the release rate. The potential of hydrogels in wound healing applications was tested in vitro and ex vivo on human skin. Topical application of the hydrogel was excellently tolerated by the skin with no impairment of epidermal viability or irritation, determined by MTT and IL-1α assays, respectively. The hydrogels were used to load and deliver epidermal growth factor (EGF), showing an increase in its ameliorating action, effectively enhancing wound closure inflicted by punch biopsy. Furthermore, BrdU incorporation assay performed in both fibroblast and keratinocyte cells revealed an increased proliferation in hydrogel-treated cells and an enhancement of EGF impact in keratinocytes.


Assuntos
Fator de Crescimento Epidérmico , Nucleosídeos , Humanos , Fator de Crescimento Epidérmico/farmacologia , Hidrogéis/farmacologia , Hidrogéis/química , Cicatrização
5.
ACS Appl Mater Interfaces ; 15(5): 7359-7370, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36701767

RESUMO

Herein, we report bioderived cross-linkers to create biopolymer-based hydrogels with tunable properties. Nucleosides (inosine and uridine) and ribose (pentose sugar lucking the nitrogenous base) were partially oxidized to yield inosine dialdehyde (IdA), uridine dialdehyde (UdA), and ribose dialdehyde (RdA). The dialdehydes were further used as cross-linkers with polysaccharide chitosan to form hydrogels. Depending on the cross-linker type and concentration, the hydrogels showed tunable rheological, mechanical, and liquid holding properties allowing the preparation of injectable, soft, and moldable hydrogels. Computational modeling and molecular dynamics simulations shed light on hydrogel formation and revealed that, in addition to covalent bonding, noncovalent interactions (π-π stacking, cation-π, and H-bonding) also significantly contributed to the cross-linking process. To demonstrate various application possibilities, the prepared hydrogels were used as a growth platform for plant cells, as injectable inks for layer-by-layer 3D printing applications, and as moldable hydrogels for soft lithography to replicate the microstructure of the plant. These findings suggest that the obtained tunable biocompatible hydrogels have the potential to be good candidates for various biotechnological applications.


Assuntos
Quitosana , Nucleosídeos , Materiais Biocompatíveis/química , Hidrogéis/química , Ribose , Quitosana/química , Uridina
6.
J Exp Bot ; 74(3): 848-863, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36383402

RESUMO

The pericarp is the predominant tissue determining the structural characteristics of most fruits. However, the molecular and genetic mechanisms controlling pericarp development remain only partially understood. Previous studies have identified that CLASS-II KNOX genes regulate fruit size, shape, and maturation in Arabidopsis thaliana and Solanum lycopersicum. Here we characterized the roles of the S. lycopersicum CLASS-II KNOX (TKN-II) genes in pericarp development via a detailed histological, anatomical, and karyotypical analysis of TKN-II gene clade mRNA-knockdown (35S:amiR-TKN-II) fruits. We identify that 35S:amiR-TKN-II pericarps contain more cells around their equatorial perimeter and fewer cell layers than the control. In addition, the cell sizes but not the ploidy levels of these pericarps were dramatically reduced. Further, we demonstrate that fruit shape and pericarp layer number phenotypes of the 35S:amiR-TKN-II fruits can be overridden by the procera mutant, known to induce a constitutive response to the plant hormone gibberellin. However, neither the procera mutation nor exogenous gibberellin application can fully rescue the reduced pericarp width and cell size phenotype of 35S:amiR-TKN-II pericarps. Our findings establish that TKN-II genes regulate tomato fruit anatomy, acting via gibberellin to control fruit shape but utilizing a gibberellin-independent pathway to control the size of pericarp cells.


Assuntos
Giberelinas , Solanum lycopersicum , Giberelinas/metabolismo , Frutas/metabolismo , Solanum lycopersicum/genética , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Phytochemistry ; 204: 113445, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36165867

RESUMO

Cannabis sativa L. is used to treat a wide variety of medical conditions, in light of its beneficial pharmacological properties of its cannabinoids and terpenes. At present, the quantitative chemical analysis of these active compounds is achieved through the use of laborious, expensive, and time-consuming technologies, such as high-pressure liquid-chromatography- photodiode arrays, mass spectrometer detectors (HPLC-PDA or MS), or gas chromatography-mass spectroscopy (GC-MS). Hence, we aimed to develop a simple, accurate, fast, and cheap technique for the quantification of major cannabinoids and terpenes using Fourier transform near infra-red spectroscopy (FT-NIRS). FT-NIRS was coupled with multivariate classification and regression models, namely partial least square-discriminant analysis (PLS-DA) and partial least squares regression (PLS-R) models. The PLS-DA model yielded an absolute major class separation (high-THC, high-CBD, hybrid, and high-CBG) and perfect class prediction. Using only three latent variables (LVs), the cross-validation and prediction model errors indicated a low probability of over-fitting the data. In addition, the PLS-DA model enabled the classification of chemovars with genetic-chemical similarities. The classification of high-THCA chemovars was more sensitive and more specific than the classifications of the remaining chemovars. The prediction of cannabinoid and terpene concentrations by PLS-R yielded 11 robust models with high predictive capabilities (R2CV and R2pred > 0.8, RPD >2.5 and RPIQ >3, RMSECV/RMSEC ratio <1.2) and additional 15 models whose performance was acceptable for initial screening purposes (R2CV > 0.7 and R2pred < 0.8, RPD >2 and RPIQ <3, 1.2 < RMSECV/RMSEC ratio <2). Our results confirm that there is sufficient information in the FT-NIRS to develop cannabinoid and terpene prediction models and major-cultivar classification models.

8.
Front Plant Sci ; 13: 991983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160961

RESUMO

Storage at low temperatures is a common practice to prolong postharvest life of fruit and vegetables with a minimal negative impact on human/environmental health. Storage at low temperatures, however, can be restricted due to produce susceptibility to non-freezing chilling temperatures, when injuries such as physiological disorders and decays may result in unmarketable produce. We have investigated tomato fruit response to postharvest chilling stress in a recombinant inbred line (RIL) population developed from a cross between a chilling-sensitive cultivated tomato (Solanum lycopersicum L.) breeding line and a chilling-tolerant inbred accession of the tomato wild species S. pimpinellifolium L. Screening of the fruit of 148 RILs under cold storage (1.5°C) indicated presence of significant variations in chilling tolerance, manifested by varying degrees of fruit injury. Two extremely contrasting groups of RILs were identified, chilling-tolerant and chilling-sensitive RILs. The RILs in the two groups were further investigated under chilling stress conditions, and several physiological parameters, including weight loss, chlorophyll fluorescence parameters Fv/Fm, and Performance Index (PI), were determined to be efficient markers for identifying response to chilling stress in postharvest fruit. The Fv/Fm values reflected the physiological damages endured by the fruit after cold storage, and PI was a sensitive marker for early changes in photosystem II function. These two parameters were early indicators of chilling response before occurrence of visible chilling injuries. Antioxidant activities and ascorbic acid content were significantly higher in the chilling-tolerant than the chilling-sensitive lines. Further, the expression of C-repeat/DREB binding factors (CBFs) genes swiftly changed within 1-hr of fruit exposure to the chilling temperature, and the SlCBF1 transcript level was generally higher in the chilling-tolerant than chilling-sensitive lines after 2-hr exposure to the low temperature. This research demonstrates the presence of potential genetic variation in fruit chilling tolerance in the tomato RIL population. Further investigation of the RIL population is underway to better understand the genetic, physiological, and biochemical mechanisms involved in postharvest fruit chilling tolerance in tomato.

9.
Nanoscale Adv ; 4(9): 2124-2133, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133443

RESUMO

In this work, we present biocompatible nanocarriers based on modified polysaccharides capable of transporting insulin macromolecules through human skin without any auxiliary techniques. N-Alkylamidated carboxymethyl cellulose (CMC) derivatives CMC-6 and CMC-12 were synthesized and characterized using attenuated total reflectance Fourier transform infrared (ATR-FTIR) and nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography and thermogravimetric, calorimetric and microscopic techniques. The prepared modified polysaccharides spontaneously assemble into soft nanoaggregates capable of adjusting to both aqueous and lipid environments. Due to this remarkable self-adjustment ability, CMC-6 and CMC-12 were examined for transdermal delivery of insulin. First, a significant increase in the amount of insulin present in lipid media upon encapsulation in CMC-12 was observed in vitro. Then, ex vivo studies on human skin were conducted. Those studies revealed that the CMC-12 carrier led to an enhancement of transdermal insulin delivery, showing a remarkable 85% insulin permeation. Finally, toxicity studies revealed no alteration in epidermal viability upon treatment and the absence of any skin irritation or amplified cytokine release, verifying the safety of the prepared carriers. Three-dimensional (3D) molecular modeling and conformational dynamics of CMC-6 and CMC-12 polymer chains explained their binding capacities and the ability to transport insulin macromolecules. The presented carriers have the potential to become a biocompatible, safe and feasible platform for the design of effective systems for transdermal delivery of bioactive macromolecules in medicine and cosmetics. In addition, transdermal insulin delivery reduces the pain and infection risk in comparison to injections, which may increase the compliance and glycemic control of diabetic patients.

10.
Curr Opin Biotechnol ; 78: 102794, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36095994

RESUMO

Improved postharvest storage is a major target for pepper-crop production. The three main components of postharvest improvement of pepper fruit are reducing water-loss rate, reducing chilling susceptibility, and increasing resistance to pathogens. To date, a small number of Quantitative Trait Locus (QTL) studies have been reported for reduced water loss and enhanced tolerance to chilling and anthracnose. More effort is needed to screen germplasm collections for accessions with improved postharvest traits. Molecular studies have enabled the identification of candidate genes conferring reduced susceptibility to chilling injury and pathogen infection in pepper fruit, and in related crops such as tomato - which may be implemented in pepper. Manipulation of the activity of these genes by genome editing can improve postharvest pepper quality.


Assuntos
Frutas , Melhoramento Vegetal , Frutas/genética , Locos de Características Quantitativas/genética , Fenótipo , Água
11.
Plant Physiol ; 190(1): 657-668, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35703985

RESUMO

Fruits can be divided into dry and fleshy types. Dry fruits mature through senescence and fleshy fruits through ripening. Previous studies have indicated that partially common molecular networks could govern fruit maturation in these different fruit types. However, the nature of such networks remains obscure. CLASS-II KNOX genes were shown to regulate the senescence of the Arabidopsis (Arabidopsis thaliana) dry fruits, the siliques, but their roles in fleshy-fruit development are unknown. Here, we investigated the roles of the tomato (Solanum lycopersicum) CLASS-II KNOX (TKN-II) genes in fleshy fruit ripening using knockout alleles of individual genes and an artificial microRNA line (35S:amiR-TKN-II) simultaneously targeting all genes. 35S:amiR-TKN-II plants, as well as a subset of tkn-II single and double mutants, have smaller fruits. Strikingly, the 35S:amiR-TKN-II and tknII3 tknII7/+ fruits showed early ripening of the locular domain while their pericarp ripening was stalled. Further examination of the ripening marker-gene RIPENING INHIBITOR (RIN) expression and 35S:amiR-TKN-II rin-1 mutant fruits suggested that TKN-II genes arrest RIN activity at the locular domain and promote it in the pericarp. These findings imply that CLASS-II KNOX genes redundantly coordinate maturation in both dry and fleshy fruits. In tomato, these genes also control spatial patterns of fruit ripening, utilizing differential regulation of RIN activity at different fruit domains.


Assuntos
Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Etilenos/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
12.
Phytochemistry ; 200: 113215, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35483556

RESUMO

Cannabis is used to treat various medical conditions, and lines are commonly classified according to their total concentrations of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Based on their ratio of total THC to total CBD, cannabis cultivars are commonly classified into high-THC, high-CBD, and hybrid classes. While cultivars from the same class have similar compositions of major cannabinoids, their levels of other cannabinoids and their terpene compositions may differ substantially. Therefore, a more comprehensive and accurate classification of medicinal cannabis cultivars, based on a large number of cannabinoids and terpenes is needed. For this purpose, three different chemometric-based classification models were constructed using three sets of chemical profiles. We examined those models to determine which provides the most accurate "chemovar" classification. This was done by analyzing profiles of cannabinoids, terpenes, and the combination of these substances using the partial least square-discriminant analysis multivariate (PLS-DA) technique. The chemical profiles were selected from the three major classes of medicinal cannabis that are most commonly prescribed to patients in Israel: high-THC, high-cannabigerol (CBG), and hybrid. We studied the correlations between cannabinoids and terpenes to identify major bio-indicators representing the plant's terpene and cannabinoid content. All three PLS-DA models provided highly accurate classifications, utilizing six to nine latent variables with an overall accuracy ranging from 2 to 11% CV. The PLS-DA model applied to the combined cannabinoid-and-terpene profile did the best job of differentiating between the chemovars in terms of misclassification error, sensitivity, specificity, and accuracy. The combined cannabinoid-and-terpene PLS-DA profile had cross-validation and prediction misclassification errors of 4% and 0%, respectively. This is the first study to demonstrate the highly accurate classification of samples of medicinal cannabis based on their cannabinoid and terpene profiles, as compared to cannabinoid profiles alone. Furthermore, our correlation analysis indicated that 11 cannabinoids and terpenes might serve as bio-indicators for 32 different active compounds. These findings suggest that the use of multivariate statistics could assist in breeding studies and serve as a tool for minimizing the mislabeling of cannabis inflorescences.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Maconha Medicinal , Analgésicos , Canabinoides/análise , Canabinoides/química , Cannabis/química , Dronabinol/análise , Humanos , Melhoramento Vegetal , Terpenos
13.
Foods ; 11(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35454704

RESUMO

In this study, oligomers of carboxymethyl cellulose (O-CMC) were used as a new postharvest treatment for fresh produce. The oligomers were prepared by green and cost-effective enzymatic hydrolysis and applied to prevent spoilage and improve storability of fresh-cut strawberries. The produce quality was improved by all formulations containing O-CMC in comparison to the control, as indicated by the decrease in decay incidence, weight loss (min ~2-5 times less), higher firmness, microbial load decrease, better appearance, and sensorial quality of the fruits. Natural resources: ascorbic acid, gallic acid, and vanillin were further added to enhance the beneficial effect. O-CMC with vanillin was most efficient in all of the tested parameters, exhibiting the full prevention of fruit decay during all 7 days of refrigerated storage. In addition, fruits coated with O-CMC vanillin have the smallest weight loss (%), minimum browning, and highest antimicrobial effect preventing bacterial (~3 log, 2 log) and yeast/mold contaminations. Based on the obtained positive results, O-CMC may provide a new, safe, and effective tool for the postharvest treatment of fresh produce that can be used alone or in combination with other active agents.

14.
Carbohydr Polym ; 284: 119206, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35287917

RESUMO

Quercetin-chitosan (QCS) polysaccharide was synthesized via non-radical reaction using L-valine-quercetin as the precursor. QCS was systematically characterized and demonstrated amphiphilic properties with self-assembling ability. In-vitro activity studies confirmed that quercetin grafting does not diminish but rather increases antimicrobial activity of the original chitosan (CS) and provided the modified polysaccharide with antioxidative properties. QCS applied as a coating on fresh-cut fruit reduced microbial spoilage and oxidative browning of coated melon and apple, respectively. Notably, QCS-based coatings prevented moisture loss, a major problem with fresh produce (2%, 12% and 18% moisture loss for the QCS-coated, CS-coated and uncoated fruit, respectively). The prepared QCS polysaccharide provides advanced bioactivity and does not involve radical reactions during its synthesis, therefore, it has good potential for use as a nature-sourced biocompatible active material for foods and other safety-sensitive applications.


Assuntos
Quitosana , Cucurbitaceae , Antioxidantes/farmacologia , Polissacarídeos/farmacologia , Quercetina/farmacologia
15.
Food Chem ; 378: 132056, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030463

RESUMO

A series of quaternary dimethyl-(alkyl)-ammonium chitosan derivatives (QACs) was synthesized and studied for physicochemical properties and bioactivity. The QACs tended to spontaneously self-assembly into nanoaggregates. Antimicrobial activity was examined in vitro on Gram-negative Escherichia coli (E. coli) and Gram-positive Listeria innocua (L. innocua) bacteria as well as phytopathogenic fungus Botrytis cinerea. The hexyl chain-substituted QAC-6 demonstrated the highest potency causing 3.0- and 4.5-log CFU mL-1 reduction of E. coli and L. innocua, respectively. QAC-6 was tested for antimicrobial activity on stainless steel coupons and fresh spinach leaves. A traditional 'wet' application (spray) and dry Engineered Water Nanostructure (EWNS) approach were used for spinach decontamination. With both approaches, significant reduction of microbial load on the treated produce was achieved. The wet application showed a greater reduction of microbial load, while the advantages of EWNS were reaching the antimicrobial effect with miniscule dose of active agent leaving treated surface visibly dry.


Assuntos
Quitosana , Escherichia coli O157 , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Folhas de Planta , Verduras
16.
ACS Nano ; 15(12): 19446-19456, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34817154

RESUMO

This paper reports one-step synthesis of polysaccharide-based nanovehicles, capable of transporting ionic zinc via plant cuticle without auxiliary stimulation. Delivery of highly hydrophilic nutritive microelements via the hydrophobic cuticle of plant foliage is one of the major challenges in modern agriculture. In traditional nutrition via roots, up to 80% of microelements permeate to soil and get wasted; therefore, foliar treatment is an environmentally and economically preferable alternative. Carboxymethyl cellulose (CMC) was modified to amphiphilic N-octylamide-derivative (CMC-8), which spontaneously self-assemble to nanovehicles. It was found that hydrophobic substituents endow a biopolymer with unexpected affinity toward a hydrophilic payload. CMC-8 nanovehicles effectively encapsulated ionic zinc (ZnSO4) and delivered it upon foliar application to pepper (Capsicum annuum) and tomato (Solanum lycopersicum) plants. Zinc uptake and translocation in plants were monitored by SEM-EDS and fluorescence microscopic methods. In planta monitoring of the carrier was done by labeling nanovehicles with fluorescent carbon dots. Three-dimensional (3-D) structural modeling and conformational dynamics explained the CMC-8 self-assembly mechanism and zinc coordination phenomenon upon introduction of hydrophobic substituents.


Assuntos
Poluentes do Solo , Solanum lycopersicum , Carboximetilcelulose Sódica , Raízes de Plantas , Zinco/análise
17.
ACS Appl Mater Interfaces ; 13(31): 37693-37703, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34337945

RESUMO

This study presents antibiofilm coating formulations based on Pickering emulsion templating. The coating contains no bioactive material because its antibiofilm properties stem from passive mechanisms that derive solely from the superhydrophobic nature of the coating. Moreover, unlike most of the superhydrophobic formulations, our system is fluorine-free, thus making the method eminently suitable for food and medical applications. The coating formulation is based on water in toluene or xylene emulsions that are stabilized using commercial hydrophobic silica, with polydimethylsiloxane (PDMS) dissolved in toluene or xylene. The structure of the emulsions and their stability was characterized by confocal microscopy and cryogenic-scanning electron microscopy (cryo-SEM). The most stable emulsions are applied on polypropylene (PP) surfaces and dried in an oven to form PDMS/silica coatings in a process called emulsion templating. The structure of the resulting coatings was investigated by atomic force microscopy (AFM) and SEM. The surface of the coatings shows a honeycomb-like structure that exhibits a combination of micron-scale and nanoscale roughness, which endows it with its superhydrophobic properties. After tuning, the superhydrophobic properties of the coatings demonstrated highly efficient passive antibiofilm activity. In vitro antibiofilm trials with E. coli indicate that the coatings reduced the biofilm accumulation by 83% in the xylene-water-based surfaces and by 59% in the case of toluene-water-based surfaces.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Emulsões/farmacologia , Antibacterianos/química , Dimetilpolisiloxanos/química , Emulsões/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Dióxido de Silício/química , Tolueno/química , Xilenos/química
18.
J Sci Food Agric ; 100(8): 3275-3282, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32048293

RESUMO

Grafting of vegetable seedlings is a unique horticultural technology, practiced for more than five decades, aiming to overcome problems associated with intensive cultivation on limited arable land. Grafting can protect vegetables against soil-borne diseases and nematodes; against abiotic stresses such as high or low temperatures, salinity, drought or excessive soil-water content; and against elevated soil concentrations of heavy metals and organic pollutants. Watermelon is one of the most popular vegetables to be grafted, and more than 90% of the plants worldwide are commercially grafted. This mini review aims to summarize the latest available information about the effects of rootstock/scion combinations with respect to enhancing or impairing watermelon fruit-quality. A better understand of the influence of rootstock/scion compatibility or incompatibility on fruit-quality parameters will facilitate decision-making by growers and direct breeding programs to produce high-quality grafted fruits in a cost-effective manner. © 2020 Society of Chemical Industry.


Assuntos
Citrullus/crescimento & desenvolvimento , Frutas/química , Melhoramento Vegetal , Raízes de Plantas/química , Citrullus/química , Frutas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento
19.
ACS Appl Bio Mater ; 3(4): 2209-2217, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35025273

RESUMO

A series of stable polysaccharide derivatives that spontaneously self-assemble into nanocarriers was synthesized by applying a reductive amination on chitosan. The prepared nanocarriers were comprehensively studied and found to allow encapsulation of molecular cargo in both aqueous and lipidic media and deliver this cargo across biological barriers. The nanocarriers have demonstrated effective transdermal delivery of diclofenac (Voltaren), a nonsteroidal anti-inflammatory drug, by increasing its skin permeation up to 100 vs the tested control. The modified polysaccharides were studied with a panel of three types of bioreporter bacteria sensitive to genotoxic and cytotoxic stresses. These studies showed the general safety of the prepared nanocarriers and provided insights concerning their activity in collaboration with the aliphatic side chain length. The described nanocarriers could be applied as tunable biocompatible vehicles for the delivery of medicines, cosmetic agents, and in other applications.

20.
Plant J ; 94(1): 169-191, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29385635

RESUMO

Combined quantitative trait loci (QTL) and expression-QTL (eQTL) mapping analysis was performed to identify genetic factors affecting melon (Cucumis melo) fruit quality, by linking genotypic, metabolic and transcriptomic data from a melon recombinant inbred line (RIL) population. RNA sequencing (RNA-Seq) of fruit from 96 RILs yielded a highly saturated collection of > 58 000 single-nucleotide polymorphisms, identifying 6636 recombination events that separated the genome into 3663 genomic bins. Bin-based QTL analysis of 79 RILs and 129 fruit-quality traits affecting taste, aroma and color resulted in the mapping of 241 QTL. Thiol acyltransferase (CmThAT1) gene was identified within the QTL interval of its product, S-methyl-thioacetate, a key component of melon fruit aroma. Metabolic activity of CmThAT1-encoded protein was validated in bacteria and in vitro. QTL analysis of flesh color intensity identified a candidate white-flesh gene (CmPPR1), one of two major loci determining fruit flesh color in melon. CmPPR1 encodes a member of the pentatricopeptide protein family, involved in processing of RNA in plastids, where carotenoid and chlorophyll pigments accumulate. Network analysis of > 12 000 eQTL mapped for > 8000 differentially expressed fruit genes supported the role of CmPPR1 in determining the expression level of plastid targeted genes. We highlight the potential of RNA-Seq-based QTL analysis of small to moderate size, advanced RIL populations for precise marker-assisted breeding and gene discovery. We provide the following resources: a RIL population genotyped with a unique set of SNP markers, confined genomic segments that harbor QTL governing 129 traits and a saturated set of melon eQTLs.


Assuntos
Mapeamento Cromossômico , Cucurbitaceae/genética , Frutas/genética , Locos de Características Quantitativas/genética , Cucurbitaceae/metabolismo , Qualidade dos Alimentos , Frutas/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiologia , Ligação Genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...